Identification of a Gene (FMR-1) Containing a CGG Repeat Coincident with a Breakpoint Cluster Region Exhibiting Length Variation in Fragile X Syndrome

*Department of Clinical Genetics
Rotterdam
The Netherlands

†Institute for Molecular Genetics
Human Genome Center
Howard Hughes Medical Institute
Baylor College of Medicine
Houston, Texas 77030

‡Departments of Biochemistry and Pediatrics
Emory University School of Medicine
Atlanta, Georgia 30322

§Department of Human Genetics
Sylvius Laboratory
Leiden
The Netherlands

‖Department of Cell Biology
Erasmus University
Rotterdam
The Netherlands

Summary

Fragile X syndrome is the most frequent form of inherited mental retardation and is associated with a fragile site at Xq27.3. We identified human YAC clones that span fragile X site-induced translocation breakpoints coincident with the fragile X site. A gene (FMR-1) was identified within a four cosmid contig of YAC DNA that expresses a 4.8 kb message in human brain. Within a 7.4 kb EcoRI genomic fragment, containing FMR-1 exonic sequences distal to a CpG island previously shown to be hypermethylated in fragile X patients, is a fragile X site-induced breakpoint cluster region that exhibits length variation in fragile X chromosomes. This fragment contains a lengthy CGG repeat that is 250 bp distal of the CpG island and maps within a FMR-1 exon. Localization of the brain-expressed FMR-1 gene to this EcoRI fragment suggests the involvement of this gene in the phenotypic expression of the fragile X syndrome.

Introduction

Fragile X syndrome is the most frequently encountered form of inherited mental retardation in humans, with a prevalence estimated to be 1 in 1250 males (Gustavson et al., 1986; Webb et al., 1986). Fragile X syndrome segregates as an X-linked dominant disorder with reduced penetrance, since either sex, when carrying the fragile X mutation, may exhibit mental deficiency. Sherman et al. (1984, 1985) have shown that approximately 30% of carrier females are penetrant and that 20% of males carrying the fragile X chromosome are phenotypically normal but may transmit the disorder and have fully penetrant grandsons. In addition to the mental retardation, which is variable in severity, penetrant males exhibit additional phenotypic involvement including macroorchidism and distinctive facies (Nussbaum and Ledbetter, 1990). Since fully penetrant males rarely reproduce, it has been suggested that the frequency of new fragile X mutations may be as high as 1 in 3000 germ cells to maintain the population frequency (Brown, 1990).

Fragile X syndrome, as implied by the name, is associated with a fragile site, expressed as an isochromatid gap in the metaphase chromosome, at map position Xq27.3 (Krawczun et al., 1985). The fragile X site is induced by cell culture conditions that perturb deoxypyrimidine pools and is rarely observed in greater than 50% of the metaphase spreads (Sutherland and Hecht, 1985). Neither the molecular nature of the fragile X site nor its relationship to the gene(s) responsible for the clinical expression of the syndrome is understood. However, based upon genetic linkage studies as well as in situ hybridizations, the fragile X site and its associated gene(s) are tightly linked, if not coincident (Oostra et al., 1990; Rousseau et al., 1991; Hirst et al., 1991).

To elucidate the fragile X site at the molecular level, somatic cell hybrids were isolated that contained translocations between rodent chromosomes and the human fragile X chromosome, retaining either human Xpter-wq27.3 or human Xq27.3+qter, referred to as proximal or distal translocations relative to the fragile X site (Warren et al., 1987, 1988, 1990). Since the high frequency and specificity of the chromosome breakage were not observed in normal X hybrids and since the translocation breakpoints map within the same interval defined by polymorphic loci that flank the fragile X locus (Warren et al., 1990; Rousseau et al., 1991; Hirst et al., 1991), these breakpoints are likely to coincide with the fragile X site.

A yeast artificial chromosome (YAC) has been isolated that spans some of these translocation breakpoints and includes polymorphic loci that flank the fragile X locus (Heitz et al., 1991). Within this region, a fragile X-related CpG island was identified that is aberrantly hypermethylated in patients and most carriers of the fragile X syndrome (Vincent et al., 1991; Bell et al., 1991). Although the significance of this CpG island hypermethylation remains unclear, these data do imply the presence of a gene, perhaps inactivated by methylation, within a genomic region that includes the fragile X-associated hybrid breakpoints. We report below the isolation and characterization of a brain-expressed gene, designated FMR-1, that is associated with this CpG island; we show that the majority of the
Figure 1. Southern Blot Analysis of PFG-Resolved SalI-Digested DNA of Proximal Translocation Hybrids Probed with p46-1.1

Y75-1B-M1 is a somatic cell hybrid containing the intact fragile X chromosome from which all other hybrids were derived. Lanes 2-9 are proximal translocation hybrids containing centric human Xpter-q27.3 translocated to different rodent chromosome arms. Q1Q and Q1V are distal translocation hybrids containing human Xq27.3+qter translocated to different centric rodent chromosomes. The distal translocation hybrids have lost the human sequence detected by p46-1.1. Hybrids Y751B-7 and Y751B-14 show the same 600 kb SalI fragment as the parental hybrid; however, all other proximal translocation hybrids show variant bands indicating that probe p46-1.1 detects sequence within 600 kb of these translocation breakpoints.

hybrid translocation breakpoints cluster within a 7.4 kb fragment, containing both the CpG island and sequences at the 5' end of FMR-1, which exhibits length variation in patients, suggesting the association of the fragile X site with FMR-1.

Results

Isolation of YACs Spanning the Fragile X Translocation Breakpoints

Through regional mapping of YAC clones containing DNA inserts derived from the distal human Xq (Nelson et al., 1991), an 80 kb YAC (RS46) was found to map within Xq27.3, proximal to the fragile X-associated hybrid breakpoints. A 4.0 kb subclone (p46-1.1) of RS46 identified a normal 600 kb SalI fragment on pulsed-field gel (PFG) electrophoresis that was altered in size in 6 of 8 proximal translocation hybrids (Figure 1). Previous PFG electrophoresis analyses of these hybrids, with more distant X-linked probes, had shown identical band sizes and therefore similar methylation patterns, as might be expected since the hybrids were derived from the same parental fragile X somatic cell hybrid (Y75-1B-M1). These data therefore suggest that in 75% of the proximal translocation hybrids, the human breakpoint is within the 600 kb SalI fragment observed in the parental, intact fragile X hybrid. In the translocation hybrids, the distal human SalI site is lost and replaced by heterologous translocations containing different rodent SalI sites.

Since YAC RS46 does not hybridize to the DNA of the distal translocation hybrids and therefore does not cross these translocation breakpoints, additional YACs were sought of this region. A YAC library developed at the Human Polymorphism Study Center (CEPH; Albertsen et al., 1990) was screened using RS46-specific oligonucleotide primers 1625 and 1626 (Nelson et al., 1991). A YAC of 475 kb (209G4) was identified that completely overlaps YAC RS46 and includes sequences distal to the proximal translocation breakpoints that are present in 13 of 14 distal translocation breakpoints (data not shown). YAC 209G4 encompasses 86% (19 of 22) of both the proximal and distal translocation breakpoints and thus identifies a fragile X-associated breakpoint cluster region. In situ hybridization using YAC 209G4 showed localization to the expressed fragile X site with signal on both flanking boundaries of the isochromatid gap of the fragile site as well as within the gap itself, suggesting the presence of unco-
Figure 3. Physical Map of the Fragile X Region of Genomic and YAC DNA
(A) Physical map of the fragile X chromosome in the vicinity of the fragile X locus. Shown are the Sall sites, which give rise to the 600 kb fragment seen in hybrid Y75-1BM1 probed with p46-1.1 and the normal 620 kb BssHII fragment observed in normal X chromosomes. The sites within the box are those previously shown to be methylated on the fragile X chromosome. The position and orientation of FMR-1 are shown.

(B) Higher resolution physical map derived from both YAC inserts and genomic DNA. Probe p46-1.1 and the DXS546 loci are shown, as are the positions of cDNAs and cosmids. YACs RS46 and 209G4 are shown below in alignment with the map (cross-hatched boxes indicate YAC vector sequences). The positions of the translocation breakpoints are shown as well as the orientation of the map relative to the X chromosome telomeres.

densed DNA within the fragile site and indicating that YAC 209G4 includes this region (data not shown).

The close proximity of these YACs to the fragile X locus was independently supported by genetic linkage studies between a polymorphism identified in YAC RS46 and the fragile X locus. DXS546 is a dinucleotide repeat that reveals nine alleles of variable length that are informative in >80% of fragile X families (G. J. R., unpublished data). In highly selected families previously shown to have crossovers with tightly linked flanking markers, DXS546 cosegregated, without recombination, with the fragile X locus (LOD score 6.95 at 0 = 0). As shown in Figure 2, a carrier daughter and affected son are recombinant between the fragile X locus (FRAXA) and proximal markers DXS539 (probe JH69) and DXS369 (probe RNI), which map approximately 5 CM proximal to FRAXA with LOD scores greater than 40 (Oostra et al., 1990; 6. Oostra, unpublished data). Therefore, DXS546 positions YACs RS46 and 209G4 near the mutation responsible for the clinical phenotype of the fragile X syndrome.

A physical map of YAC 209G4 and of the corresponding genomic region was developed and is shown in Figure 3. A CpG island containing five infrequently cleaving restriction endonuclease sites was identified 150 kb distal to DXS546. This CpG island is that identified by a previous independent isolation of YAC 209G4 from the CEPH library (Heitz et al., 1991). This CpG island appears hypermethylated on the fragile X chromosome. Vincent et al. (1991) and Bell et al. (1991) have both reported the absence of a normal 620 kb BssHII fragment (Figure 3A) in patients and most carriers of the fragile X syndrome. The absence of the fragment appears to be due to the methylation (and therefore resistance to cleavage) of the BssHII site (b in Figure 3B), leading to a very large band that fails to resolve on PFG electrophoresis. Since CpG islands often are found 5' to mammalian genes (Lindsay and Bird, 1987) and since methylation of such islands may influence expression of associated genes (Wolf et al., 1984; Yen et al., 1984), it is possible a gene may reside near this fragile X-related CpG island and its expression (or lack of) may be responsible for at least a portion of the fragile X phenotype.

Cosmid Contig Surrounding the Fragile X–Related CpG Island and Breakpoint Cluster Region
To characterize the region surrounding this CpG island, a cosmid library was constructed from the yeast clone harboring YAC 209G4, and cosmids containing human DNA were identified by hybridization to human-specific repetitive elements. A four cosmid contig was identified that spans the fragile X–related CpG island (Figure 3B) from BssHII site a (cosmid 22.3) through BssHII site c (cosmid 4.1).

Cosmid 22.3 was found to include the breakpoints of 11 of 16 tested translocation hybrids (4 of 5 proximal translocations and 7 of 11 distal translocations; all 16 breakpoints map within YAC 209G4). As shown in Figure 4A, nine bands (including doublet bands at 5.6 and 5.5 kb), surveying approximately 44 kb of genomic DNA, are observed on Southern analysis of EcoR1-digested DNA of the intact X hybrid Y75–1BM1 following hybridization with radiolabeled and preannealed cosmid 22.3. Of these nine bands, three are present in the proximal hybrid micro21D (with a novel 3.8 kb junctional fragment) and five are present in the distal hybrid Q1X (with a novel 4.8 kb junctional fragment). The 7.4 kb band of the intact X hybrid Y75–1BM1 is absent in both translocation hybrids, indicating that both breakpoints fall within this interval. The other nine hybrids all exhibited patterns similar to either micro21D or
Figure 4. Southern Blot Analysis of Fragile X-Associated Translocation Breakpoints

DNA of hybrid Y75-1B-M1, containing the intact fragile X chromosome, proximal hybrid micro21D, and distal hybrid Q1X was cleaved with EcoRI and 10 μg of each sample loaded onto the gel. (A) Southern blot hybridized with cosmid 22.3 and (B) the same filter hybridized with pE5.1.

Q1X, with distinct junctional fragments allowing identification of a fragile X-associated breakpoint cluster region (FXBCR) with this 7.4 kb fragment.

The 7.4 kb EcoRI fragment observed above on the fragile X chromosome was not observed in restriction digests of the overlapping cosmids 22.3 and 31.4. However, comparison of the cosmid restriction maps with the genomic EcoRI fragments detected by cosmid 22.3 shows the replacement of the 7.4 kb fragment of the fragile X chromosome with a 5.1 kb fragment of normal DNA, which, similar to the 7.4 kb fragment, includes the BssHII site of the fragile X-related CpG island (Figure 5A). The normal 5.1 kb fragment was subcloned to further analyze this difference. As shown in Figure 4B, the 5.1 kb fragment (pE5.1; Figure 5B) hybridizes specifically to the 7.4 kb EcoRI fragment of the fragile X chromosome and clearly shows the junctional fragments in micro21D and Q1X. Thus, a fragment length difference exists between the normal DNA used to construct YAC 209G4 and the fragile X chromosome of hybrid Y75-1B-M1, and this fragment identifies the FXBCR.

Figure 5. Restriction Map of Cosmid 22.3 and pE5.1

(A) Cosmid 22.3 showing BshHII sites a and b as well as EcoRI and BamHI sites. BamHI site in brackets was destroyed during cloning. Solid lines below the map show fragments that hybridize to cDNAs BC72 and BC22.

(B) Map of the cloned 5.1 kb EcoRI fragment of cosmid 22.3 (pE5.1). Solid line below map shows the position of the FMR-1 exonic sequence, which contains the Xhol site.

Figure 6. Length Variation of EcoRI Fragments from Normal and Fragile X Human Chromosomes Detected with Probe pE5.1

Lanes 1, 6, and 7 show hybridization of the normal 5.1 kb EcoRI fragment in placental DNA (lane 1) and cloned into a cosmid (22.3) or YAC vector (209G4) and seeded into hamster DNA at single-copy level. Somatic cell hybrids containing portions of fragile X chromosomes in hamster backgrounds show bands of altered size from the normal 5.1 kb fragment. Lane 9 contains the hybrid 3XH3000-111 (Nussbaum et al., 1986a). Lane 3 contains DNA from micro21D, a proximal hybrid with a breakpoint distal to the fragile site; lane 4 contains DNA from micro21D, a proximal hybrid with the same chromosome as micro21D, however with a breakpoint detected by pE5.1 (see Figure 5). Lane 5 contains hamster DNA. Lanes 8–12 contain DNA from five unrelated fragile X patients' lymphoblastoid lines. These are GM03200, GM0402S, GM08697, GM08912, and GM07294. Bands altered from the normal 5.1 kb are seen in each fragile X sample.
Figure 7. Map and Sequence of FMR-1 cDNA Clones

Map (A) and DNA sequence (B) of FMR-1 cDNA clones. The 3765 nucleotides of DNA sequence generated from cDNA clones BC72 and BC22 defining the FMR-1 gene are shown with translation of the 657 amino acid open reading frame. Nucleotides 1–1027 derive from BC72, and nucleotides 934–3765 are from BC22. The CGG repeat encoding the contiguous Arg residues begins with base 37 and extends to base 127.
Figure 8. Northern Blot Analysis of Poly(A) RNA Hybridized with cDNA BC22

Five micrograms of poly(A)-selected RNA from human brain (lane 1) and normal placenta (lane 2) was electrophoresed, blotted onto a GeneScreen Plus filter, and hybridized with radiolabeled BC22 insert. A single hybridizing species of approximately 4.8 kb is observed in each lane.

Figure 9. Zoo Blot Analysis of DNA Isolated from Several Species Hybridized with cDNA BC22

Ten micrograms of DNA from each species was cleaved with EcoRI and electrophoresed and blotted onto nylon membrane. Hybridization was carried out with labeled cDNA overnight using standard conditions and washed to a final stringency of 0.2 x SSC for 5 min at 65°C.

The probe failed to detect signal in human liver, fetal lung, and fetal kidney, but did detect message in lymphocytes (data not shown).

Figure 9 shows hybridization of BC22 to DNA samples from a number of different organisms. Hybridization signals were observed with all organisms with the exception of Drosophila melanogaster. Since this blot was washed under very stringent conditions (final wash in 0.2 x SSC at 65°C for 5 min), cross-hybridization may be observed in Drosophila under less stringent conditions. However, the high stringency of the final wash does indicate the highly conserved nature of this sequence, particularly in Caenorhabditis elegans.

A repeated DNA sequence is found close to the 5' end of BC72 with 28 CGG triplets interspersed with two AGG triplets. In the predicted open reading frame, this repeat would generate a protein domain composed of 30 contiguous arginine residues. Homology searches with the predicted protein sequence identify significant overlaps with a number of arginine-rich proteins, although none contain a polyarginine stretch of equivalent length. The remainder of the protein shows no significant homology in protein data base searches. However, searches against DNA sequence data bases identify several related sequences, the strongest of which is with the human androgen receptor (AR). This is an X-linked gene (mapping to Xq12) with an identical, though smaller, CGG repeat in the first exon that encodes a polyglycine stretch (Tilley et al., 1989).

Location of the FMR-1 Gene Relative to the Fragile X-Related CpG Island and FXBRC

BC22 demonstrates hybridization to the 70 kb fragment of YAC 209G4 between BssHII sites b and c as well as to cosmids 4.1, 34.4, 31.4, and 22.3 (see Figure 3), indicating exons spanning over 80 kb of DNA. The proximal/distal orientation of the transcript was determined by hybridizing end fragments of BC22 to the cosmid contig. Since the 3' end of BC22 detected cosmids 4.1 and the 5' end detected...
cosmid 22.3, the transcriptional orientation was distal from BssHII site b toward the Xq telomere. This suggests the potential involvement of the fragile X-related CpG island in the regulation of this gene. A 1 kb 5' fragment of BC72 (to the HindIII site at position 1026 of Figure 7) was used to study the location of the exons encoding this portion of the mRNA in the cosmid and YAC clones. In cosmid 22.3, this probe identifies three FonRI fragments (see Figure 5A) distal to the BssHII site b. One of the fragments contains the BssHII site (b) as well as the breakpoint cluster region and exhibits length variation in fragile X patients. Restriction mapping and direct sequencing of the 5.1 kb EcoRI fragment using a primer derived from BC72 sequence (position 223 to 246) demonstrated the presence of an exon immediately distal to the BssHII site b. This exon contains an Xhol site (position 137 in the FMR-1 cDNA sequence) that is found 310 nucleotides from the BssHII site in genomic DNA (see Figure 5B), allowing the 5' end of BC72 to be positioned 220 bp from the BssHII site. This exon, within a 1 kb Psrl fragment (Figure 5B), also contains the block of CGG repeats that are seen in the sequence analysis of the genomic DNA as well. This Psrl fragment has been found to contain two translocation breakpoints (micro21D and Q1X) distal to the BssHII site (b) as well as to the region of length variation observed in fragile X chromosomes (Yu et al., 1991). Therefore, the CGG repeat is found within the fragile X-related CpG island, constituting a portion of this CpG-rich region, and is in the immediate proximity of the breakpoint cluster region and the region of length variation.

Discussion

We report the YAC cloning of 475 kb of human DNA corresponding to the region involved in the fragile X syndrome and show the presence of a gene, designated FMR-1, adjacent to the fragile X-related CpG island. It is further demonstrated that within a 7.4 kb EcoRI fragile X genomic fragment, which contains the CpG island and FMR-1 exon sequences, is a breakpoint cluster region where the majority of fragile X-associated translocation breakpoints are located. This same EcoRI fragment, which is 5.1 kb in normal X chromosomes, undergoes a variable increase in size in the fragile X chromosome. The fragile X variation and breakpoint clustering may involve a highly unusual CGG repeat found within the coding region of FMR-1 and also present within this same EcoRI fragment, 220 bp distal to the BssHII site, demonstrating fragile X-related methylation.

The data presented above suggest the identification of the region containing the fragile X site. A breakpoint cluster region is demonstrated where the majority of fragile X-associated translocation breakpoints fall. These translocations were identified by the segregation of the marker loci HPRT and GDPD, which flank the fragile X site (Warren et al., 1987, 1990). Since the translocation breakpoints are flanked by the same polymorphic loci that genetically flank the fragile X syndrome locus (Rousseau et al., 1991; Hirst et al., 1991), the breakpoints were believed to cluster at the fragile X site. We show above that these breakpoints indeed cluster within a 7.4 kb EcoRI fragment. Since almost 70% (11 of 16) of tested translocation breakpoints fall within 7.4 kb, an interval of less than 0.03% of the estimated 30 Mb that separate the marker loci used for selection, the clustering is quite remarkable and is compelling evidence for the presence of the fragile X site within this fragment. This is further supported by the observation that this EcoRI fragment is markedly smaller (5.1 kb) in normal chromosomes, and when the normal fragment (pE5.1) is used as probe on Southern blot analysis of fragile X DNA, significantly increased size variation is observed. This suggests that an insertion and/or amplification event within the normal 5.1 kb fragment occurred in the fragile X chromosome. Finally, in situ hybridization of cloned material from this region maps precisely within the isochromatid gap characteristic of the fragile X site.

Within this 5.1 kb fragment, the fragile X-related CpG island is found (Heitz et al., 1991), which contains a BssHII site hypermethylated in fragile X chromosomes (Vincent et al., 1991; Bell et al., 1991). The correlation of this CpG island and its methylation status also supports the involvement of the 5.1 kb fragment, reported above, in the fragile X syndrome. Indeed, linkage analysis using a highly polymorphic dinucleotide repeat (DXS546) located within 150 kb (Figure 3) of the CpG island demonstrates tight linkage with the fragile X locus (FRAXA) without recombination. Such linkage is of significance, as it represents evidence independent of the physical mapping studies and is correlated to the clinical expression of the fragile X syndrome, indicating the close proximity of the fragile X site and a gene involved in phenotype.

Such a gene is described above, designated FMR-1 (fragile X mental retardation-1). There is compelling evidence that FMR-1 is important in the phenotypic consequences of inheriting the fragile X locus: first, the 5' association of FMR-1 with the CpG island shown to be selectively associated with hypomethylation in the fragile X chromosome; second, the presence of a FMR-1 exon within the 5.1 kb fragment, which is increased in size in the fragile X chromosome and contains the fragile X-associated breakpoint cluster region; third, the presence of a highly unusual trinucleotide repeat CGG, which is reiterated 30 times in the normal mRNA of FMR-1, and the placement of this repeat 250 bp distal to the BssHII site of the CpG island within the 5.1 kb fragment; and, fourth, the expression of FMR-1 in human brain, as would be expected for an inherited disorder whose major phenotype is mental retardation. Although the finding of FMR-1 does not preclude the additional involvement of other genes in the fragile X phenotype, FMR-1 is a likely candidate, particularly since there are no other readily apparent CpG islands in the immediate vicinity (Figure 3 and Heitz et al., 1991).

Further study of FMR-1 is required to show a definitive involvement with the fragile X syndrome, including currently ongoing expression studies in normal and affected individuals. However, the data presented above clearly indicate this gene to be of considerable interest independent of this involvement. The CGG repeat within the coding region is quite striking since the reading frame of the message would suggest a protein containing 30 contiguous...
arginine residues. If this repeat is not processed off, FMR-1 would encode an exceptionally basic protein. No significant protein matches were found on data base searches, except for the polyarginine stretch found in histones and protamines of different organisms, although the arginine stretches in these proteins are shorter and interspersed with other amino acids (Lee et al., 1987; Martin-Ponthieu et al., 1991). Considering that DNA-binding proteins such as histones and protamines contain arginine stretches of variable length and that a nuclear translocation signal is found, it might well be considered that FMR-1 has a DNA-binding function in the cell nucleus. FMR-1 appears to have been strongly conserved through evolution with stringent hybridization through yeast. Hybridization to such organisms should allow the isolation and sequencing of the homologous sequences, which may reveal conserved protein domains within FMR-1, indicating regions of functional importance. Also, such homologies, particularly with C. elegans, may allow experimental approaches in other organisms to unravel the function of FMR-1.

It is tempting to speculate that the unusual FMR-1 CGG repeat, found within the same 5.1 kb fragment associated with the breakpoint cluster region and fragile X patient length variation, is a component of the fragile site itself. It has long been speculated that the fragile X site is a repeat of variable length (Nussbaum et al., 1986; Ledbetter et al., 1986; Warren et al., 1987). This possibility awaits further analysis of the repeat region in normal and fragile X chromosomes as well as the junctional sequences of the translocation chromosomes. If the fragile site is not the CGG repeat, the data presented above strongly suggest that the responsible sequence is adjacent to the repeat within the implicated EcoRI fragment. However, the high Cpg density of this repeat may influence local methylation status and if expanded may result in the abnormal methylation levels observed in fragile X chromosomes.

The finding of larger fragment lengths in fragile X chromosomes relative to normal chromosomes does indicate a molecular diagnostic approach that should be superior to either linkage analysis or cytogenetic examination for the fragile X site. In particular, Southern blot hybridization with pE5.1 of DNA digested both with EcoRI and BshHI should document both the methylation status of the BshHI sites and the size of the resulting fragment(s).

In summary, we report the presence of a brain-expressed gene (FMR-1) containing a CGG repeat that is coincident with a fragile X breakpoint cluster region, which itself exhibits length variation in fragile X chromosomes. The breakpoint cluster region and the interval of length variation are likely to contain the sequence responsible for the cytologic expression of the fragile X site. FMR-1 exonic sequences, particularly the CGG repeat, also map to this same interval and therefore are likely related in some manner. Although the exact nature of the fragile X site, the mechanisms of the mutation, and phenotypic consequences remain to be elucidated, these data provide the elements needed to now explore the molecular biology, biochemistry, and cell biology of this unique and puzzling genetic disease.

Experimental Procedures

PFGE Electrophoresis

Southern blot analysis of genomic DNA of YAC DNA resolved by PFGE electrophoresis was performed essentially as described (Smith et al., 1988). Trypsinized and washed mammalian cells were suspended in molten agarose (final concentration 0.5% w/v, Bakers) prepared in 5x buffer (75 mM NaCl, 25 mM EDTA [pH 8.0]) at a final concentration of 1.5 x 10^6 cells/ml. Chromosomal DNAs were isolated from YAC clones as described (Anand et al., 1989). Yeast cells from a 10 ml saturated culture were harvested, rinsed once in 50 mM EDTA (pH 8.0), and recovered in 0.5 ml of SBE-zymolase (1 M sorbitol, 25 mM EDTA [pH 8.0], 14 mM 2-mercaptoethanol, 1 mg/ml zymolase [ICN]). 0.5 ml of 1% seaphage agarose (FMC Corp.) in SBE (without zymolase) was added, and the suspension was transferred to plug molds. Spherooplast generation (for yeast cells) was for 5 hr to overnight in SBE-zymolase. Cell lysates (mammalian or yeast cells) was for 2 days in ESP (0.5 M EDTA [pH 8.0], 1% N-lauroylsarcosine, 1 mg/ml proteinase K) at 50°C. Restriction endonuclease digestion was performed using the manufacturer's recommended buffers and conditions with a 50 μl plug size in 250 μl of buffer containing 50 U of enzyme. After double digests, the plugs were rinsed and equilibrated, following digestion with the first enzyme, with the second buffer several times prior to digestion with the second enzyme. PFGE electrophoresis was carried out on a Bio-Rad contour-clamped homogeneous electric field (DE311) apparatus through 1% agarose (Bethesda Research Laboratories) at 20 V and 14°C in 0.5 x TBE buffer (45 mM Tris-borate, 1 mM EDTA). For resolution of fragments of ~200–1200 kb, switch time was 60 s for 17 hr followed by 90 s for 10 hr; for resolution of fragments of ~10–500 kb, the switch times were ramped from 5 s to 50 s over 27 hr. Southern blotting and hybridization were carried out as described (Southern, 1975; Fainhberg and Vogelstein, 1993) with the exception that acid depurination in 0.25 M HCl was allowed to proceed 20 min for PFGEs. Radiolabeled probes were synthesized by random priming from 50 ng of gel-purified fragments, except when intact cosmids were used that were nick translated (Boehringer Mannheim kit; following manufacturer's recommendations), or genomic probes containing repetitive elements, repeat suppression was accomplished by preassociation with l–3 mg of sonicated human placental DNA in 190–990 pl of 5 x SSC (1 x SSC is 150 mM NaCl, 15 mM sodium citrate [pH 7.0]) for 3–10 min at 65°C prior to addition to the filter. Washing was carried out to a final stringency wash of 0.2 x SSC for 15 min at 66°C prior to autoradiography. Saccharomyces cerevisiae strain YNN266 chromosomes (Bio-Rad), centromer markers of phase λ (Bio-Rad), or high molecular weight markers (BRL) were used as size standards.

Cosmid Library Construction of YAC DNA

Agarose plugs (0.5%, seaphage; FMC) containing 5–10 μg of yeast DNA were prepared as described (van Ommeren and Verkerk, 1986). Blocks (100 μl) of DNA were equilibrated on ice in 0.5 ml of MN buffer digestion buffer, containing 0.1 mg/ml bovine serum albumin (MB grade; Boehringer Mannheim). After 2–3 hr, the buffer was replaced by 150 μl of fresh buffer, to which Nboil was added (0.0001–0.0007 U). Following overnight incubation on ice, digestion was carried out for 40 min at 37°C. The agarose blocks were melted, and the DNA was dephosphorylated with 1 U of calf intestinal alkaline phosphatase (Boehringer Mannheim) and treated with 2.5 U of agarase (Calbiochem). The solution was extracted twice with phenol–chloroform, and the DNA was precipitated with ethanol and dissolved in 10 ml Tris, 0.1 mM EDTA (pH 7.4) at a concentration of 500 ng/μl. DNA (250 ng) was ligated to 500 ng of EcoRI (dephosphorylated) and BamHl-digested vector (p2CpG; Dauwerse et al., 1989). Ligation and packaging were carried out according to standard procedures. Cosmids containing human fragments were selected by hybridizing with human-specific Alu repeat probe.

YAC and Cosmid Subcloning

YACs were subcloned following isolation of the intact chromosome by preparative PFGE electrophoresis and EcoRI digestion of the DNA in molten agarose (seaphage; FMC). Fragments were phenol–chloroform extracted, ethanol precipitated, recovered, and ligated into EcoRI-cut, dephosphorylated pZAPII arms according to manufacturer's rec-
Total RNA was extracted using guanidinium isothiocyanate followed
by centrifugation into 1 M LiCl as described (Sambrook et al., 1989). PCR was continued for 10 cycles of 1 min each at 97°C denaturation, 62°C annealing, and 72°C extension followed by 20 additional cycles with the annealing temperature lowered to 55°C. The reaction volume was then increased to 50 μl with the same reagents and concentrations except that one primer was 5' end labeled with [32P]dATP as described (Sambrook et al., 1989). PCR products were analyzed by electrophoresis of 2 μl of reaction through a 40 cm 5% polyacrylamide denaturing sequencing gel for approximately 2.25 hr. The gel was dried without fixing and exposed to X-ray film overnight at room temperature.

Polymerase Chain Reaction Analysis of DXS548 Alleles

Analysis of DXS548 was carried out as described (G. J. R. et al., unpublished data). Amplification was carried out on 0.2–0.5 μg of genomic DNA in 10 μl total reaction containing 0.25 mM dNTPs, 40 ng of primers 5'-AGACCTTTACTAGAATAGTAAACC and 5'-GATCATTA-
GACTACCTCCTCCTTCCTC, and 0.01% of Taq polymerase in a buffer of 10 mM Tris-HCl, 50 mM KCl, 12 mM MgCl2, and 0.01% gelatin. Three cycles of polymerase chain reaction (PCR) were carried out in the following fashion: three cycles of 1 min each at 97°C, 62°C annealing, and 72°C extension followed by 20 additional cycles with the annealing temperature lowered to 55°C. The reaction volume was then increased to 50 μl with the same reagents and concentrations except that one primer was 5' end labeled with [32P]dATP as described (Sambrook et al., 1989). PCR was continued for 10 cycles of 1 min each at 95°C denaturation, 62°C annealing, and 72°C extension. PCR products were analyzed by electrophoresis of 2 μl of reaction through a 40 cm 5% polyacrylamide denaturing sequencing gel for approximately 2.25 hr. The gel was dried without fixing and exposed to X-ray film overnight at room temperature.

Northern Blot Analysis

Total RNA was extracted using guanidinium isothiocyanate followed by centrifugation through cesium chloride as described (Sambrook et al., 1989). Poly(A) RNA was selected by passage through oligo(dT)-cellulose (Aviv and Leder, 1972). Human brain, liver, and fetal poly(A) RNA was purchased from Clontech Laboratories (Palo Alto, CA).

Five microliters of poly(A)-containing RNA or 25 μg of total RNA was precipitated and dissolved in 20 μl of 50% (v/v) formaldehyde and 1 × MEn (20 mM MOPS [pH 6.6], 5 mM sodium acetate, 10 mM EDTA) and inubated for 10 min at 60°C; 5 μl of dye marker (50% sucrose, 0.5% bromophenol blue) was added, and the samples were loaded onto a 0.8% formaldehyde agarose gel. Electrophoresis was carried out for 3 hr at 100 V, and the gel was then soaked for 30 min in 20 x SSC and blotted onto a nitrocellulose or nylon membrane (GeneScreen Plus, Dupont) overnight in 10 x SSC (Thomas, 1980). The RNA was fixed to the membranes by baking under vacuum for 2 hr at 80°C. The membranes were then hybridized in 50% formamide, 5 x Denhardt's solution, 50 mM sodium phosphate (pH 6.8), 10% dextran sulfate, and 100 μg of denatured salmon sperm DNA at 42°C for 2–4 hr. Hybridization with the probe was for 16–20 hr at 42°C in the above buffer. Filters were washed with 3 x SSC, 0.1% SDS at 50°C, and then the SSC concentration was lowered according to the level of background with a final wash in 0.1 x SSC, 0.1% SDS.

DNA Sequencing

Sequence of BC22 was obtained via a shotgun strategy as described in Bankier et al. (1987) using dideoxynucleotide termination. The sequen- tions were analyzed on an automated DNA sequencing ABI 373 using fluorescently labeled oligonucleotide primers. Sequence information derived from 26 random M13 clones was sequenced using the sequence assembly manager software developed by the Molecular Biology Information Resource of the Department of Cell Biology, Baylor College of Medicine.

An EcoRI to HindIII fragment at the 5' end of BC72 was subcloned into Bluescript II KS and sequenced with vector and internal primers. Sequence at the extreme 5' end is incomplete due to the difficulty of extension by polymerase through the repeated CGG sequence.

Acknowledgments

We thank K. E. Bakker, R. M. v. d. Helm, J. F. Peters, and C. L. Stalyn for assistance and helpful discussion; S. Ledbetter and D. Ledbetter for their continuous support; and D. Le Paslier of CEPH (Paris) for the generous gift of the YAC libraryclone. G. J. R. is a postdoctoral fellow of the March of Dimes Birth Defects Foundation (15-8057). E. R. is a postdoctoral fellow of the Human Frontier Science Program. This research was supported by the Foundation of Clinical Genetics to A. M. M. I. V.; a grant of the MG2ZW to D. A. O.; a DOE grant (FG02-88ER60092) to D. L. N. and C. T. C.; the Howard Hughes Medical Institute and a National Institutes of Health Genome Center Grant to C. T. C.; and NIH grants (H200251 and H200038) to S. T. W.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 USC Section 1734 solely to indicate this fact.

Received May 9, 1991; revised May 16, 1991.

References

Feinberg, A. P., and Vogelstein, B. (1983). A technique for radiola-
labeling DNA restriction fragments to high specific activity. Anal. Bio-
chem. 132, 8–13.

